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Stability of thermoviscous Hele-Shaw flow 
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(Received 26 April 1995) 

Viscous fingering can occur as a three-dimensional disturbance to plane flow of a 
hot thermoviscous liquid in a Hele-Shaw cell with cold isothermal walls. This work 
assumes the principle of exchange of stabilities, and uses a temporal stability analysis 
to find the critical viscosity ratio and finger spacing as functions of channel length, 
L,. Viscous heating is taken as negligible, so the liquid cools with distance (x) 
downstream. Because the base flow is spatially developing, the disturbance equations 
are not fully separable. They admit, however, an exact solution for a liquid whose 
viscosity and specific heats are arbitrary functions of temperature. This solution 
describes the neutral disturbances in terms of the base flow and an amplitude, A ( x ) .  
The stability of a given (computed) base flow is determined by solving an eigenvalue 
problem for A(xj, and the critical finger spacing. The theory is illustrated by using 
it to map the instability for variable-viscosity flow with constant specific heat. Two 
fingering modes are predicted, one being a turning-point instability. The preferred 
mode depends on L,. Finger spacing is comparable with the thermal entry length 
in a long channel, and is even larger in short channels. When applied to magmatic 
systems, the results suggest that fingering will occur on geological scales only if the 
system is about freeze. 

1. Introduction 
Melt flow in a channel is prone to fingering in the plane of the wall, owing to cou- 

pling between heat advection and temperature-dependent flow resistance. Fingering 
can develop as melt fills the channel, or as an instability of flow established in a full 
channel. In the first case, fingers are visible on the filling front, as in Whitehead & 
Helfrich (1991, plate 1). Such fingers are preserved in solidified sheet intrusions of 
magma (Pollard, Muller & Dockstader 1975; figure 8). This type of fingering may 
also occur during polymer moulding (Pearson 1985; pp. 227,591). Fingering on an 
established base flow is observed during basaltic fissure eruptions. Over time, eruption 
from an initially linear crack is confined to few isolated vents (Richter et al. 1970; 
Delaney & Pollard 1982). Fingering in melts is explained physically by Pearson. Shah 
& Vieira (1973). A liquid column parallel to the primary flow, and slightly hotter than 
neighbouring columns, flows faster than they, and cools more slowly. A spanwise 
thermal perturbation thus induces fingering unless suppressed by conduction to the 
wall. The instability might also occur on sheet-like upwellings in Earth’s solid mantle, 
where creep is temperature-dependent (Whitehead & Helfrich 1991, p. 41 55). 

Melt fingering is similar to the Saffman-Taylor instability as both are driven by 
a streamwise gradient in viscosity or effective permeability (see (4j, below). The two 
instabilities &fleer in the boundary conditions. When the Saffman-Taylor instability 
occurs on the displacement front separating two miscible fluids, such as water and 
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glycerine or C02 and oil, the walls are in egect insulated and diffusion occurs 
only parallel to the walls. The base flow is unsteady, but one-dimensional. But 
in melt flow, diffusion across the thin gap is dominant, and the base flow is a 
thermal entry flow in which the two dynamically significant temperature gradients 
are mutually perpendicular. This has both physical and technical implications. The 
critical viscosity ratio is greater than one for melt fingering, but is one for the SaRman- 
Taylor instability of a plane base flow of two miscible fluids (Tan & Homsy 1986, 
equation 44). Also, analysis of the melt flow appears at first to be complicated. The 
base flow must be coniputed numerically, the disturbance equations are complicated, 
and not separable in general. This complexity hides the physics of the instability. 

Two ways have been tried to circumvent this difficulty. Pearson et al. (1973) study 
the instability with a simplified model resembling a Galerkin analysis of the viscous 
flow. Derivatives representing diffusion of heat and momentum across the channel 
gap are replaced by multiples of the mean temperature and velocity. The model 
admits a solution representing plane flow, and this loses stability to fingers above a 
critical viscosity ratio. The study is suggestive but, as the authors note, not definitive 
since the temperature profile varies downstream as the flow adjusts to the change 
in boundary conditions. A second approach has been tried by Morris (1988): see 
Appendix C, below. The Helc-Shaw equations admit a parallel-flow solution if the 
wall temperature decreases linearly downstream, and the viscosity p = The 
disturbance equations are then separable, and fingering occurs as a turning-point 
instability. Further analysis is needed to see if this result is typical of more realistic 
flows. 

The present work is a precise treatment of the temporal stability of the thermal 
entry flow modelled qualitatively by Pearson et al. It provides a solution suitable for 
testing approximate analyses of more realistic and complex models of geological flows. 
Here is the approach. Section 2 derives the stream function-vorticity formulation 
for three-dimensional thermoviscous channel flow. Section 3 shows that to each 
steady plane solution of these equations, there corresponds a family of steady three- 
dimensional flows. The structure of these flows in the thin dimension of the channel 
is determined by the parent plane flow. The variation parallel to the walls is governed 
by a pair of coupled two-dimensional partial differential equations. The exact solution 
thus expresses the three-dimensional flow in terms of a pair of two-dimensional flows : 
without approximation, it has the desirable properties of a Galerkin analysis. It is 
used later, in $9, to interpret thc results of the linear stability analysis of the plane 
flow. Section 4 states the equations governing arbitrary infinitesimal disturbances, 
and 95 gives an explicit solution to the disturbance equations. This solution shows, 
without approximation, that a set of disturbances exists for which the stability 
problem reduces to an eigenvalue problem for an ordinary differential equation. The 
coefficients of this equation depend on the plane base flow, and are computed by 
finite-difference solution of the thermal entry flow, as described in $6. The explicit 
solution of the disturbance equations removes the technical complications described 
in the previous paragraph, and shows the stability of the base flow is determined by 
the pressure gradient rather than by details of the velocity and temperature profiles. 
Although the solution describes a particular class of disturbances, physical reasoning 
suggests that this class contains the most unstable disturbances. There is a second 
reason for believing the disturbances physically relevant. The form of the eigenvalue 
problem solved in the Galerkin analysis of Pearson et al. is identical with that solved 
here. (The coefficients differ because Pearson’s model does not closely represent the 
pressure gradient in the viscoiis flow,) The present analysis therefore coincides with 
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FIGURE 1 .  Definition sketch. Fingering occurs in the third (y) dimension. 

the Galerkin analysis, except in those details where the Galerkin analysis is plainly 
questionable. Sections 7 and 8 discuss the numerical solution of the eigenvalue 
problem, and its predictions. Lastly in $9, the linear stability analysis is interpreted in 
the light of the exact three-dimensional solution given in $3. 

The principle of exchange of stabilities is assumed here, i.e. neutral disturbances 
are assumed steady. This is justified because Pearson et al. found only real growth 
rates in analysing their model. (Their Galerkin analysis does not accurately represent 
all details of the flow, but should describe such a qualitative property.) Because the 
growth rates are real even at supercritical viscosity ratios, the unstable disturbance is 
not convected downstream but grows at each point in the flow. The instability is thus 
absolute rather than convected, in the sense used in studies of shear layer stability (e.g. 
Landau & Lifshitz 1987, $28). Absolute instability is possible in this flow because the 
equation for the pressure is elliptic, so the disturbance is felt throughout the flow, and 
because boundary conditions tie the temperature field to a given entry region. 

2. Statement of the problem 
Figure 1 shows the geometry. The channel has length L, and thickness 2d. The 

base flow occupies the (x, 0, z)-plane, with the primary flow parallel to Ox. Fingering 
occurs in the third ( y )  dimension. The wall and inlet temperatures (T,, T,)  are both 
constants. The velocity ( V )  vanishes on both walls. The pressure (p) is fixed at x = 0 
and x = L,. 

Material properties other than viscosity, ,u( T) ,  and specific heat, c( T ) ,  are taken as 
constant. This is a good approximation for viscous melts like magma, see Murase & 
McBirney (1973). The two explicit solutions given here, namely (6) and (1 1), hold for 
arbitrary p( T )  and c( T) .  Freezing of materials whose liquid and solid states have the 
same density can thus be included by taking c( T )  as a suitable generalized function 
of T .  In this work, however, these explicit solutions are explored in detail only for 
constant specific heat. 

Let Q be volume flow rate per unit width in the base flow; and K ,  thermal diffusivity 
at the inlet temperature. Let Pe = Q / K  and L, = dPe. (I,, is the thermal entry length, 
i.e. the distance travelled downstream by a particle moving with velocity Q / d  in the 
time needed for heat to diffuse across the channel gap.) Define dimensionless (without 
asterisks) variables by 

Q p* = p, ziTL,p, T,  - T, = T (Ti - Tw).  

Also c , (T)  = cic(T) and ,u*(T) = p w p ( T ) ,  where subscripts i and w denote conditions 
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at the inlet and wall temperatures. The dimensionless channel length is X = L,/L,  = 
rcL,/Qd, by definition of L,. 

Throughout this work, a prime denotes differentiation of a function of a single 
variable. 

The thermal entry length is assumed large compared with the gap width. Fluid 
acceleration and viscous heating are assumed negligible. The first assumption holds 
because P e  >> 1 in the flows of interest, and implies that the slope (a) of the 
streamlines is small: specifically, CL - d/Le - Pe-' .  Lubrication theory is therefore 
appropriate: streamwise diffusion of heat and momentum is negligible, and p IS 
uniform in z ,  as in (1) below. In lubrication flows, fluid acceleration is negligible if 
clRe << 1, where Re = p V d / p .  Here SI - Pep',  so that ctRc - Pr-'. Fluid acceleration 
is thus negligible, since the Prandtl number P r  >> 1 for melts. Lastly, viscous heating 
is taken as negligible because the Brinkman number Br = pV2//kAT is small in many 
dyke flows. Delaney & Pollard (1982) estimate the following values as typical of 
magma flow i n  dykes: V - 0.5 m s-', dyke thickness d - 2 m, p - 102Pa s, thermal 
conductivity k - 2W m-'K-', thermal diffusivity IC - 10 6m2s-1, and AT - 10'K. 
For such a flow, Br - lo-', P r  - lo5, and Pe  - lo6. 

The governing Hele-Shaw equations are obtained formally by writing the equations 
for isochoric creeping flow in dimensionless variables, and taking the limit P c  + cc 
with (x,y) fixed. They are 

v p  = (p%L p z  = 0, 
c V - gradT = T3=, div V = 0. 

( l a b )  

i k d )  

Here c(T) is the specific heat, as noted above. Subscripts denote differentiation. grad 
and V = ui + vj + wk are the three-dimensional gradient operator and velocity; V 
and D are the components of these quantities in the (x, 0, y)-plane, i s .  v = V - wk, 
and V = grad - k8/iiz. 

(To avoid confusion, we note that a type of Hele-Shaw approximation is also used 
to study injection moulding of polymers. In that literature, the term wT, representing 
convection of heat perpendicular to the walls is taken as zero if the walls are parallel 
(e.g. Dupret & Dheur 1992, p. 586). The present work includes the term w T z :  it is, of 
course, comparable in magnitude to the other convective terms in (lc).) 

Equation (Id) is satisfied by introducing two stream functions, namely ip(x,y) and 
$(x,y,z). Appendix A shows that the velocity in Hele-Shaw flow (1) can be written 
as 

where $ ( x , y , + l )  = -+_1/2. y is a stream function for the volume transport, because 
integration of (2) over z shows that u(x,y ,z)  dz = ~ 7 )  and J-l v (x , y , z )  dz = -yx. 

Thus 
(pz)z3 = 0. Substitution for v from (2), followed by integration in z ,  gives 

u = W J 4 2 ,  11 = -vk& M: = v x g ,  - Y J 4 \ ,  (2) 

1 I 

The equation for 9 follows by elimination of p between (la) and (1b). 

0 = zK-' + p&. (3) 

K(x. y)  is an arbitrary function of integration, determined by the second-order equa- 
tion ( 3 )  and three boundary conditions, namely 4 = 1/2, 4z = 0 at z = l, and 
C#I = 0 at z = 0. K(x,J') depends implicitly on the temperature distribution in the 
channel: specifically, ( 3 )  and the boundary conditions can be solved for K .  to show 
that without approximation K = J!, ( z 2 / p )  dz. 

The equation for w follows by manipulating (la), ( l b )  and ( 3 )  to get the ( z -  
averaged) equation for the z-component of vorticity. First, these equations imply that 
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- K p ,  = yy and K p ,  = ~ 7 ~ .  K is thus the effective permeability of the Hele-Shaw cell. 
Secondly, elimination of p shows that the equation for y is 

1 
K 

V . - V y = O ,  (4) 

i.e. V2y! = Vyi * Vln K .  This is satisfied by plane flow, in which y = y and K 
depends only on x. But the right-hand side is not zero if K varies across lines of 
constant y’. A three-dimensional disturbance to the plane flow thus induces transverse 
vorticity (-V2y). The induced motion tends to amplify the disturbance if K decreases 
downstream (compare Tan & Homsy 1988, equation 31). 

The flow is determined by (lc), ( 3 ) ,  (4), and the boundary conditions. 

3. A family of steady solutions including plane flow 

T ( x , z ) ,  K = K(x), so that v = Ui + W k  where U = cPZ and W = -GX. 
The governing equations admit the plane solution $? = y ,  4 = @(x,z), T = 

The plane flow satisfies 

I. V - gradT = TZz and 0 = z G  + ,ilUz, where G = K-’. (5a, b )  

C e c ( T )  is the specific heat, as defined in $2. G is the pressure gradient in the plane 
flow, i.e. G = -p’(x). 

The flow is an even function of z ,  because the inlet flow is even. On z = 1, 
U = 0 = T ,  and @ = 1/2. On z = 0, @ = 0 = T,. At x = 0, T = 1. 

Two properties of the plane flow are important for the linear stability analysis. 
First, each plane flow ( 5 )  generates afamily of three-dimensional solutions of (lc),  (3) 
and (4). Let < ( x , y )  be an arbitrary function such that t ( 0 , y )  = 0. By substitution, (3) 
is satisfied if 

T = T ( < , z ) ,  4 = @(<,z )  and K = l/c(<). 

V - G(()Vv] = 0 and yYtx  - y,<, = 1. 

(6) 

(7a, b )  

The variable specific heat and viscosity enter ( 7 )  implicitly through G. 
The three-dimensional solution (6) satisfies the same boundary conditions as the 

plane flow, because 5 vanishes at x = 0. The solution is determined by the plane 
flow (5 ) ,  and the solution of the two-dimensional partial differential equations (7). As 
noted in $1, this solution therefore has the desirable properties of a Galerkin analysis, 
without approximation. 

The steady solution of (7) is not unique in general. One solution is the plane flow 
y = y and < = x. A second, non-planar solution exists above a critical viscosity ratio, 
as shown by the following linear stability analysis of the full problem (1). See also 
(17), below. 

Equation (7) expresses precisely the physical mechanism described in the opening 
paragraph of $1. Let t be the time passed since a particle moving with velocity v,,, -yx 
crossed the line x = 0. Then the characteristic equations of (7b) are 4 = 1, x = y,,, y = 

-tpx, where the dot denotes the time derivative. Integration of the first equation shows 
that 4 = t ,  because ( vanishes at x = 0 by its definition above. 5 is thus the time 
passed since the particle crossed the line x = 0. Within a hot finger, G is relatively 
small, and the vorticity equation (7u) acts to focus the flow, as explained following 
(4). The time ( t )  needed for a particle in a hot finger to travel a given distance is 

Equations (4) and (lc) are satisfied if 



116 S. J. S. Morris 

therefore relatively small, as is t. Equation (6) then shows that in a hot finger T 
tends to stay close to the inlet temperature. Pearson (1976) described the instability 
as resulting from a modification of the path length through the Hele-Shaw cell. The 
present exact solution gives a simple explicit formulation of that idea. Equation (7) 
is used to interpret the linear stability analysis. 

A second property of the plane flow is used in $7 in discussing the turning-point 
instability. The velocity, temperature and pressure gradient in the plane flow are 
independent of channel length ( X ) ,  because the governing equations ( 5 )  are parabolic. 
As in isoviscous Poiseuille flow, X enters only when G(x) is integrated over x to find 
the pressure d r o p  flow rate relation. 

For this work, ( 5 )  was solved by modifying a standard finite-difference method for 
momentum boundary layers (e.g. Blottner 1975). Briefly, ( 5 )  is transformed to remove 
the singularity at x = 0 and JzI = 1. Three-point backward differences are used in x 
and centred differences in z .  The scheme is implicit, second order in dz, but only first 
order in dx, in practice. At each x, the nonlinear difference equations were solved by 
Picard iteration. This proves essential for accurate solutions at large viscosity ratios. 
Appendix B gives details. 

4. Equations for infinitesimal three-dimensional disturbances 
Let 6#, ... be three-dimensional disturbances to the plane flow (5) .  (These distur- 

bances are arbitrary: the three-dimensional flow is not restricted to be of the form (6)) 
Then {tp,4,T,K} = (y ,&,T ,K)  + {Stp,d#,6T76K). The equations for infinitesimal 
disturbances follow, as usual, by substitution in the governing equations, subtraction 
of the equations for the base flow, and then taking as zero all products of disturbance 
quantities. The neutral disturbances are taken as steady, i.e. exchange of stabilities is 
assumed. As noted in $1, this analysis determines the absolute stability of the base 
flow. Disturbances will therefore grow in time at any fixed point in the flow if the 
viscosity ratio exceeds the critical value found here. 

The coefficients of the disturbance equations depend only on x and z since the base 
flow is independent of y. The equations can therefore be Fourier transformed in y. 
Thus, let {dy ,  64, 6T, 6 K )  = {iQ(x), $(x,z), ?(x,z), k(x)}eiay. A hatted variable 
is the Fourier transform in y of the corresponding 4isturbance. 

Let the transform of the disturbance velocity be V = 2i + 0 j + @A, where from (2) 

i3 = -iU@, ( 8 4  b, c) 

(A prime denotes differentiation of a function with a single argument, as stated in 
$2.) Notice that all three components of the disturbance velocity are included in the 
analysis, as previously stated following (1). 

A A 

fi = -a$ U + 4z, Q = -a$ W - c j X .  

Without approximation, infinitesimal disturbances satisfy 

(947) 

(9c) 

( G y )  - A /  / -a*G;y^, =aG2W, d ~ ) ~ Z , + ~ ’ ( ~ ~ U Z ~ = z G 2 1 2 ,  
C v - grad? = FZZz - 2 $ * grad7 - ? v - gradC. 

A A A  A 

O n z = 1 ,  0 = 4 = 4 , = ~ .  O n z = ~ ,  F Z = o = + .  (10a) 
At x = 0, ? = 0 = Q’. At x = X ,  Q’ = 0. (lob) 

The last term on the right-hand side of the disturbance energy equation (9c) is 
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the perturbation due to the variable !eat capacity. Specifically, this perturbation is 
(6c) v gradT = ?c’( T )  v * gradT = T v - gradc, as in (9c). 

Equations (9) and (10) define the eigenvalue problem for the wavenumber a as a 
function of viscosity ratio. The coefficients of the eigenvalue problem are purely real, 
and the functions 8, 4, ? and k are real valued (i enters the problem only through 
the expression (8b) for 0, and the eigenvalue problem is independent of 6). 

The five conditions (10a) sp5cify the solution at each x because (9) is fourth-order 
in z ,  and contains a function K to be determined. The boundary condition (lob) on 
@’ states that 6v = 0 at the two ends, and holds because the pressure is fixed there. 

5. Explicit solution of the disturbance equations 

in z to be satisfied if 
Let A ( x )  be arbitrary. Substitution shows (9b, c), and the boundary conditions (10) 

A ( x )  is determined by the remaining equation (9a). Thus 

(,A’,)’ - a2C;A’ + /J*G‘A = 0, (12a) 
(12b,c,d) 

Equation (12) determines the stability of the base flow to the three-dimensional 
disturbances (1 1). Primes in (12) denote differentiation in x. X = KL,/Qd, as defined 
in $2, and G is the pressure gradient in the base flow (5 ) .  The boundary conditions 
fpllow from those stated following (10). In particular, A vanishes at x = 0 because 
T = 0 there. 

The set (11) is not complete, but physical reasoning suggests that it includes the 
most unstable disturbances. In the base flow, fluid is cooled by thermal boundary 
layers that emerge from the discontinuity in wall temperature and grow to fill the 
channel downstream. Fluid on the centreline remains at the inlet temperature until the 
boundary layers growing from opposite walls merge. Inspection of the disturbance 
heat equation (9c) shows that T therefore vanishes outside the growing thermal 
boundary layers. The least-damped thermal disturbance therefore vanishes at the 
wall, has a single maximum within the boundary layer, and vanishes outside it. The 
thermal disturbance ( 1  1) has these properties. 

The eigenvalue problem solved by Pearson et al. (1973, equation 29) is a special 
case of (12). Their (29) follows by substitution of their model pressure gradient (their 
(9)) in (12). The critical viscosity ratio obtained here therefore differs from that of 
Pearson et al. because their model does not accurately represent the base flow. 

This formulation shows the stability of the plane flow to be determined by the 
pressure gradient G. The theory makes concrete the intuitive analogy between flows 
with temperature-sensitive viscosity, and flows with solidification because the same 
eigenvalue problem (12) holds for both flows. Only the details of the pressure 
gradient change. The theory is illustrated in the rest of this work by applying it to 
variable-viscosity flow without solidification, i.e. with c( T )  = 1. (Solidification could 
be incorporated in the computation of the base flow by a transformation due to Lee 
& Zerkle 1969.) 

A = 0 = A” at x = 0 and A” = 0 at x = X .  
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X-1 
FIGURE 2. Relation between pressure drop and flow rate. Computed for viscosity ,u = ePoT, and 
specific heat c(T) = 1. P X - 2  = ddAp/p,KL:, as defined in (15); X = L, /Le  = KL,/Qd, as defined 
52; and B = ln(pw/p,) is the logarithm of the ratio of wall to inlet viscosity, as defined in $6. 

6. Base flow 
Results for p(x) and G(x) are given here, as they determine the stability of the base 

flow. The calculations are for c( T )  = 1, as noted above. The viscosity law is p = ecHT, 
as used by Pearson et al. By the choice of units in 92, T vanishes at the wall, and 
is one at the inlet x = 0. 8 is therefore the logarithm of the ratio of wall to inlet 
viscosity, i.e. 0 = ln(pw/p,). 

Figure 2 shows the computed flow rate-pressure drop relation for 0 = 4,5.2 and 
6, the values of 6 being chosen to illustrate the development of turning points in the 
relation. The pressure drop varies monotonically with Q if 6 is less than a critical 
value of about 5.2. Above this critical value, the pressure-flow curve has two turning 
points, as in figure 2. The existence of the turning points follows from an argument 
used by Pearson et al. on their model problem. If the channel is either very short or 
very long, the pressure drop follows the Poiseuille law with the appropriate viscosity. 
Thus Ap K p,Q for a short channel (Qd/.Lc = X-I -+ x), and Ap K pWQ for a long 
channel. When plotted in the units introduced in $2, the pressure-flow curve thus has 
unit slope for aQ/xLc t 0, and slope ,u,/,u,, = e-@ for aQ/xLc t m. For 8 >> 1, the 
slope of the large-Q asymptote is small, and turning points in the pressure-flow curve 
are possible. These turning points are important for the stability of the plane flow. 

Figure 3 shows the numerical solution for G for p = ecoT, and 8 = 4, 6 and 8. 
This range of 0 is chosen because the critical value of 0 lies between 5 and 6 for a 
wide range of channel lengths: in this sense the figure shows a typical set of base 
states. Notice that G varies linearly with x1/3 as x t 0. This happens because the 
boundary layer initially grows as x ' / ~ ,  as shown in Appendix B, equation (B7). This 
weak singularity is allowed for in solving the stability problem (see 98). 

Table 1 gives G(x) to five significant figures, to facilitate comparison of this and 
any subsequent work. These results were obtained on a grid of 12000 x 400. 

7. Turning point instability 
Equation (12) includes the turning-point instability suggested by figure 2, i.e. the 

base flow ( 5 )  is unstable to long waves a t O+ whenever the pressure-flow curve has 
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113 

FIGURE 3. Computed pressure gradient ( G )  as a function of x113. X ,  viscosity law and specific heat 
as in figure 2. As defined $2, G = -d3F:(x)/pUwQ, and x = x. /Lp.  

x1/3 G p c 
0.125 0.015700 0.875 1.1078 
0.250 0.041187 1.000 1.3750 
0.375 0.083240 1.125 1.4739 
0.500 0.16110 1.250 1.4964 
0.625 0.34430 1.375 1.4997 
0.750 0.69490 1.500 1.5000 

TABLE 1 .  Base flow for 0 = 6 

turning points. First note that (12) is satisfied if A’ = 1 and a = 0. This solution 
is trivial because the disturbance is independent of y ,  but suggests the non-trivial 
expansion 

Substitution in (12) shows that at order a2 
A ( ~ )  = + a 2 ~ l ( x )  + o(2). (13) 

(14) (GAY)’ - G + xG’ = 0, 

and A, satisfies the homogeneous boundary conditions (12b,c,d). A1 follows by 
quadrature. In particular, integration of (14) from x = 0 to x = X followed by use of 
(12c,d) shows the solution exists if f ( G  - xG) dx = 0, i.e. if 

X 

= 0, where P(X) = 1 G dx d P(X) 
~~ 

dX X2 

is the dimensionless pressure drop. 

for a given 8. The corresponding disturbance velocity and temperature are 
Equation (15) determines X(8), the channel length for which instability is possible 

G = x U , - U ,  e = o ,  + = -  xwx, f+ = x T x ,  (16) 

by (8) and (11). The spanwise disturbance velocity 6 vanishes. 
Equations (1 5) and (16) are readily interpreted. The (dimensional) pressure drop 

(Ap) is related to G by Ap = (pw,Q2/xd2) Jt G dx where X = xL,/Qd,  as defined in 



120 S. J .  S. Morris 

5.8 

6 
5.4 

5.0 I I I I I I 

0 2 4 6 8 10 
a 

FIGURE 4. Neutral stability curve with as a parameter. The top, unlabelled curve is for X + co. 
0, X ,  viscosity law and specific heat as in figure 2. As defined in $4, a = a.L,, where a. is the 
dimensional wavenumber. 

$2. G is independent of Q, since Q does not appear in the dimensionless boundary 
value problem ( 5 )  defining the plane flow, as noted in the penultimate paragraph of 
$3. Thus 

Equation (15) is thus the condition for the pressure dropflow rate curve to have a 
turning point. Similarly 

All quantities on the right-hand side of this equation are dimensional. The differenti- 
ation in Q is performed at fixed (dimensional) x*. 

These results are discussed in more detail at the end of $8. 

8. Solution of (12) for arbitrary a 

Equation (12) is singular at x = 0 because G ( x )  is singular there, as noted in the 
discussion of figure 3. The singularity was removed by the substitution x = s3, and the 
transformed equations were integrated from s = 0 to s = S = X' i3  by a second-order 
Runge-Kutta scheme with uniform steps in s. Appendix B gives details. 

Figure 4 shows the computed neutral stability curve with channel length X = S3 
as a parameter. If S exceeds a critical value ( S T ) ,  the neutral curve has two turning 
points: a local maximum at a = 0+, and a local minimum for a = a,. For S < ST, 
these turning points coalesce to form an absolute minimum at a = O+. The turning- 
point instability (1 5 )  occurs when the turning-point at a = O+ is an absolute minimum. 
It is shown below that this happens for S < Sr GZ 0.84. Since 0, = 6 for this value 
of ST,  the pressure gradient is given roughly by the middle curve in figure 3. That 
figure shows that G increases most strongly with distance for x1/3 < 0.8. This suggests 
that the turning-point instability is favoured when G increases strongly with x. This 
is consistent with the analysis in Appendix C of another example of the instability. 
There, the dimensional viscosity law is p = and the wall temperature is taken 
to decrease linearly with x. The viscosity increases exponentially with x, and so too 
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FIGURE 5. Variation of critical wavenumber (a,) with X ' / 3 .  X, viscosity law and specific heat as in 
figure 2 ;  dimensionless wavenumber as in figure 4. 
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0, X, viscosity law and specific heat as in figure 2 
FIGURE 6. Variation of critical viscosity parameter (0,) with 

does G. The heuristic reasoning above suggests that a turning-point instability should 
occur owing to the rapidly increasing pressure gradient. The calculations in Appendix 
C support this expectation. 

Figure 5 shows the variation of a, with S = X1/3, where X is the dimensionless 
channel length, as defined in 92. a, was found as follows. Near the critical point on the 
neutral stability curve for a given S, a is a doubly valued function of 8. As the critical 
8 is approached, the mean of the values of a approaches a,. The most unstable wave 
has non-zero wavelength if S S T ,  where the figure shows that 0.84 < ST < 0.85, 
i.e. X w 0.6. For long channels (S -+ m) a, -+ 7.03. The corresponding dimensional 
wavelength is 0.894Qdlrc. The striking feature of figure 5 is that the most unstable 
wavelength is at least comparable with the entry length for all X .  The geological 
implications of this are discussed below, in $9. 

Figure 6 shows the variation of 8, with S = X1l3. The minimum 8, = 5.19 at 
S = 0.75. In an infinite channel 8, = 5.78, corresponding to a viscosity ratio of 
324. This plot resembles a plot of similar results for the model of Pearson et al., but 
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0 1 2 

FIGURE 7. Eigenfunction of (12) for an infinite channel ( X  + CO) and 6 = 5.78 (approximately the 
critical value). (a)  A(x): ( h )  A’(x); and ( c )  A”(x). Viscosity and specific heat as in figure 2. 

X 

is quantitatively different. For example, their critical viscosity ratio for an infinite 
channel is about one-tenth that given here. 

Figure 7 shows the eigenfunction for an infinite channel. The thermal disturbance 
? = AT,. This vanishes downstream because A becomes constant, as in curve (a), 
and Tx vanishes. The figure also shows why absolute instability is possible in this 
flow. Because A’ = a@, curve (b )  shows that @ # 0 even at x = 0. The source 
term for the instability is the second term on the right-hand side of (Sc), particularly 
--GT,. This is non-zero even at the inlet because fi - @, by (8a). Temporal growth is 
therefore possible at a fixed point if the viscosity ratio is large enough for the source 
mechanism to overcome the stabilizing effect of heat losses to the walls. 

9. Discussion 
The set (11) of disturbances is not complete, but physical reasoning suggests that 

it contains the most unstable disturbances. In any case, this study can be used to test 
any subsequent exhaustive analysis of the instability. This solution of the disturbance 
equations is the small-amplitude limit of the steady, finite-amplitude solution (6). In 
fact, substitution shows that if E. << 1 is a given small parameter, the expressions 

[ = x + cA(x)cosay + O(e2)  and w = y - E-sinay + O(e2) (17) 
U 

satisfy (7) to order E if A ( x )  satisfies (12b). (To avoid confusion, note that (17) and 
(12b) together imply that ((0,  y )  = 0, as required by its definition in $3.) The neutral 
disturbances studied in $55-8 are thus of the form (6). 

This analysis predicts the most unstable wavelength to be either greater than, or 
comparable with, the thermal entry length for all channel lengths. The parameters for 
dyke flows, estimated by Delaney & Pollard (1982) and cited earlier in $2, correspond 
to thermal entry lengths of 50&1000 km. Features of this scale on the Earth are 
tectonic rather than geological: they are not observable on an outcrop. But the fingers 
reported by Pollard et aE. (1975) have diameters of a few metres, with comparable 
wavelengths. The simplest explanation is that fingering occurs only when magmatic 
systems are about to solidify so that flow rates have fallen sufficiently to make the 
wavelength of geological scale. This is compatible with observations of an Hawaiian 
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eruption by Richter et al. (1970), where isolated vents formed only after the initial 
eruption had subsided. A second explanation is suggested by work of Whitehead & 
Helfrich (1991). That study coupled the dyke flow to an elastic magma chamber, 
and analysed the channel flow by an approach similar to that of Pearson et al. 
Whitehead & Helfrich (p. 4155) interpret their results to imply that the preferred 
wavelength is short compared with the channel length. If this interpretation were 
true, chamber elasticity would presumably be a central part of geological fingering. 
But the authors’ interpretation of their analysis seems incorrect. Scrutiny of their 
growth rate-wavenumber plot (Whitehead & Helfrich, figure 10) shows both growth 
rate and wavenumber to be normalized by a factor (namely ‘dfldw’) vanishing at 
the neutral point. Their analysis thus implies that the most unstable waves are long 
compared with the channel length, rather than short. 

The implications of the finite-amplitude instability can be understood by scaling. 
Suppose the dimensional viscosity p = puoeOT. In the finite-amplitude instability, 
the large viscosity variation will confine the flow to tubes of radius R, in which the 
temperature difference is the rheological scale y-l. The cooling rate is determined by 
balancing convection against conduction across the tube, i.e. w Tx - q- ‘ /R2 .  But 
wR2 - Q 3 ,  the volume flow in the tube. The entry length (L3) in the three-dimensional 
flow is thus A T / T x  - O Q ~ / K ,  where O = yAT.  If a single wavelength of the instability 
produces one finger, Q 3  - Q?. - QL,, where Q and L, are the volume flow and entry 
length in the unstable plane flow. The ratio of entry lengths is thus L3/L, - 8Pe. The 
instability reduces the heat loss, and increases the entry length by concentrating the 
volume flow, and also by reducing the temperature difference available to drive heat 
flow from AT to “J’. This qualitative argument is supported by a simple solution for 
steady, finite-amplitude flow, describing the streamwise evolution of tubular fingers. 
That solution is, however, beyond the scope of this work. 

I thank M. M. Denn, G. M. Homsy, 0. Savas and J. A. Whitehead for useful 
comments. 

Appendix A. Stream functions for Hele-Shaw flow 

three-dimensional solenoidal vector field V can be written in Euler’s form 
Let 4 and y be independent, but otherwise arbitrary, functions of x,y and z .  Any 

If = grady x grad4 (A 1) 

(Ericksen 1960, $32). C#I and tp are constant on streamlines because V * grad4 = 0 = 
V * grady. Each streamline is thus specified as the intersection of surfaces of constant 
4 and y ~ .  

Equation (Al) simplifies for Hele-Shaw flow. Because p is then independent of 
z ,  all streamlines passing through the line x = const, y = const have a common 
projection on the (x, 0, y)-plane. One of the two families of surfaces needed to locate 
the streamline can therefore be taken as independent of z .  We take y = y ( x , y )  to 

4 can be taken as constant on the walls, because the kinematic condition (w = 0) 
requires V4 x V y  = 0. But 4 and y are independent families of surfaces, and Vy # 0. 
Thus V 4  = 0 on the walls. We choose C#I(x,y,+l) = f1/2. 

get (2). 
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Appendix B. Numerical method 
B.l. PlaneJEow 

Equation ( 5 )  is transformed, without approximation, to remove the singularity at 
x = 0 and 1z1 = 1. Let s = x ’ / ~ ,  and let 6 be an arbitrary function of s. Also let 
n = (1 - z ) / 6 ,  and let 

$ = i - iS2f(s, n)  and T = h(s, n). (B la, b) 

Without approximation, (5) becomes 

( 6 / ~ ) ~  [i6(fnh, - f s h n )  - Ss fhn]  = h, and tG(1 - n6) = p f n n .  (B2a,b) 

As noted above (2), this work correctly includes all convective terms in the heat 
balance. Specifically, in the transformed heat equation ( B ~ u ) ,  the first term on the 
left accounts for convection in the s-direction; the second and third terms account 
for convection perpendicular to the parabolic coordinate surfaces n =const. The 
transformed equation thus states the balance between heat convection and diffusion 
perpendicular to the walls. 

on z = 1, which can 
be written i = Ji U dz. Integration by parts, followed by elimination of U, using 
(5b),  shows that 

On n = 0, f = f, = 0 = h;  on n = F1, h, = 0. (B 2c ,4  

The remaining boundary condition determines G. It is 4 = 

I = G i l & d z .  2 (B 3) 

The use of this relation is explained below. (See (B6).) The initial condition is that 
h = 1 at x = 0. 

6 is chosen as 
s if s < s] ,  

6 = {  s1 if s > s1. 

Equation (B4) removes the singularity at x = 0 from the solution. As s + 0, T + 1 
for all 2, and (B3) shows that G + G(O), = :e-O for the viscosity law p = e-OT. The 
coefficients in (B2) are thus asymptotically independent of s as s -+ 0 because 6 + s. 
As s + 0, the solution of (B2) thus approaches the similarity solution defined by (Bl)  
with f and h satisfying 

fh‘ + h” = 0 and !G(O) = py, (B 5ab) 
f(0) = f’(0) = 0 = h ;  h(0O) = 1. (B 5c,4 

This similarity solution extends the Li.v$que solution for isoviscous flow to variable- 
viscosity flow. (For the isoviscous solution see e.g. Worscie-Schmidt 1967.) 

The domain is 0 < s < 00, 0 < n < 6-I. For computation of h (but not G, as 
discussed below), this curvilinear domain can be replaced by the rectangular domain 
0 d s < 00, 0 < n < nl, where nl = l/sl is constant. This is done, to arbitrary 
precision, by choosing nl to be large enough that h -+ 1 between the curves n = 6-1 
and n = nl. The appropriate choice depends on the viscosity parameter 8. For 
5 < 8 < 15, 8 < nl < 16. nI increases with 8 because the boundary-layer thickness is 
larger than x1/3 for 8 >> 1. 

The whole curvilinear domain must be used to compute 5; from T .  Integral (B3) 
is thus split in two. The first term gives the contribution from the area between the 
curves n = 6-I and n = n1. This term is evaluated explicitly because h = 1 in this 
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subdomain. The remainder is evaluated numerically, at each step. G is thus found 
from 

Here n1 = l / s ~  as used above. T, is the centreline temperature at x. 

powers of 6 = x1l3. For the viscosity law p = eceT, the first two terms are 
The asymptotic expansion of G(x) for x + 0 is found from (B6) by expanding in 

GeO = 3 2 + G1x1l3, where GI = n+.Jr lim(n -f’). (B 7 )  

The first term on the right gives the Poiseuille law. The second term is the correction 
to the Poiseuille law due to the displacement effect of the cold boundary layer. GI is 
found by solving (B5). Equation (B7) is used to verify the numerical method, and to 
develop the series (BX) used to start the solution of the stability problem. 

Equation (B2a) is converted to difference form using backward differences in s 
and centred differences in n. Given h and G at s, (B2b) is solved by a second-order 
Runge-Kutta method. This gives f ( s )  and f n ( s )  simultaneously. Equation (B2a) is 
then used to predict h(s + ds), and G(s + ds) is found from (B6) by the trapezoidal 
rule. Picard iteration is then used to find final values for f, h and 

The scheme was tested against the (isoviscous) Graetz-Nusselt solution (e.g. Brown 
1960), and against asymptotic analysis for 1.1 = and 6’ + co (Ockendon & 
Ockendon 1977). The method was also tested against a slower numerical method. In 
that method, the grid is uniform in x and 2 ,  and the singularity at x = 0 is treated by 
setting w = 0 for the first 50 steps in x. 

Convergence of the scheme was tested as usual, by plotting variables of interest, 
such as the eigenvalue a of (12), against ds and dn. 

at s + ds. 

B.2. Eigenvalue problem (1  2) 

As noted in the text, (12) is singular at x = 0. The singularity was removed by 
the substitution x = s3, and the transformed equation was integrated from s = 0 
to S = by a second-order Runge-Kutta method with uniform steps in s. The 
solution was started at a small positive value of s = so using the series 

GI is the coefficient of x1I3 in the series expansion of G about x = 0, as defined by 
(B7) above. Equation (BS) is derived by writing (12a) as (G(A” - a2A))’ = -2a2GA. 
The right-hand side is O(X’/~) ,  and integration in x allows (17) to be developed. 

Results were obtained using ds = 0.001 0.00025. The eigenvahe a is independent 
of SO to the precision stated if so < 0.025. The eigenfunction depends on SO unless 
0.00125 < so < 0.025. At the upper end of this range, more terms are needed in the 
starting series (BX); at the lower end, use of (B8) is limited by machine precision. 

The limiting case S + cc was calculated by cutting the line 0 < s < cc in two. 
From figure 3 (and table l), G can be taken as zero for s 3 s2 = 1.5. Equation (12) 
can be thus be solved explicitly in the interval s2 < s < 00, and is equivalent to 

P A  = A” + aA’ = 0. (B 9) 

Because A” and A’ must be continuous at S ,  (B9) thus gives the boundary condition 
at S for the numerical solution of (12) on the interval 0 < s < S. When the channel 
is infinite, this shooting method suffers from induced instability (Fox & Mayers 1968, 
p. 225). The method then accurately determines the eigenvalue and critical viscosity 
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ratio, but gives the eigenfunction much less accurately. (In this case, the eigenfunction 
was determined to within a fraction of a percent.) 

Appendix C. Parallel flow for T, = Tl - flx and its stability 
/? > 0 and TI are dimensional constants. This flow is notable because the analysis 

is simplified. The base flow is unidirectional, and the disturbance equations are 
separable. proves to increase exponentially with x, and there is a turning-point 
instability. The results are used in the text ($8) to argue that a turning-point instability 
is favoured when G increases strongly with x. 

Fluid enters the channel at x = 0 at temperature T,, and T, falls linearly with x 
for all x > 0. In the streamwise distance (Le = dPe) taken for heat to diffuse across 
the channel, T, falls by AT = /?Le. The parallel flow can be expected to occur for 
x >> L,, and the temperature difference between the centreline and wall is therefore 
proportional to AT. Dimensionless variables are therefore defined as in $2, except 
that the reference temperature is Ti, the reference temperature difference AT, and 
the pressure unit p1QL,/d3. As in the text, dimensional variables are starred. The 
viscosity law is p* = ple-Y(T-Tr) where p, and y are constants. 

C.l. Baseflow 
Let T ( z )  = - x + H ( z ) ,  U = U ( z ) ,  W = 0 and G = eoyg, where g is dimensionless, and 
proves to be constant, as noted in the comment following (C2). Because pw = pLeox, 
the equation for G implies -px = G* K pwQ/d3. The pressure gradient thus increases 
exponentially with x in this flow, because the viscosity does. The dimensionless 
constant g accounts for the details of the velocity profile. By definition of g 

YBQd and 8 = yAT = -. y/?d4G. 
8g = ~ 

J v w  K 

8g is the pressure gradient measured in units independent of Q. 0 is a measure of 
flow rate, and controls the ratio of wall to centreline viscosity. 

By substitution in ( 5 ) ,  H and U ( z )  satisfy 

o = gzeeH + u’, o = u + H”, (C 2ab)  
H’( 1) + ; = H (  1) = U( 1) = 0 = H’(0). (C 2c,d,e,J) 

Equation (C2c) follows from (C2b) and the volume constraint s,’ U dz = i. (C2) is 
solved by marching from z = 1 to z = 0, and using Newton’s method to choose g to 
satisfy (C2c). By (C2), g is independent of x, and depends only on 8. 

Figure 8 shows the relation between pressure gradient (Og),  defined by (Cla) and 
flow rate ( O ) ,  defined by (Clb). Notice that BH(0) = ln(p,/p,), where pc is the 
viscosity on the centreline. The figure shows that 8g has a maximum of 3.855 at 
8H(O) = 1.982, corresponding to a viscosity ratio p K , / p c  = 7.257. This maximum is 
associated with a turning-point instability, as shown below. It exists because Og -+ 0 
both at 8 = 0 and at a. 8g vanishes at the origin because the Poiseuille law for 
isoviscous flow requires G* K p,Q/d3. 8g thus vanishes for 8 -, 0, by (Cla). 8g also 
vanishes as 8 + a, because the large viscosity ratio then confines the flow to a thin 
layer centred on z = 0. The dimensional pressure gradient (G,) is thus proportional 
to the centreline viscosity, rather than p,, and is therefore exponentially small in Q, 
i.e. in 8. More precisely, an elementary asymptotic analysis shows that for 8 --f cc, 
8g - (8/2~0)~exp(-OH(O)), where 8H(O) - $0 + el, co = 1.688 and el = -1.710. The 
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FIGURE 8. Pressure gradient-flow rate relation for the parallel flow. 
Og and OH(0) are defined by (Cl). 

pressure gradient is thus more sensitive to flow rate in the parallel flow than in the 
entry flow, because the dimensional centreline temperature varies with flow rate here. 

C.2. Stability 
It is convenient to use (8a) to express the disturbance equations (9) in terms of i2 
rather than 3. Let fi  = eeXk. Then for the parallel base flow, (9) becomes 

0” + 190’ - a2@ = agk, i2, + (a@ + g k  - 6?)U’(z) = 0, (C 3) 

a is the disturbance wavenumber in the spanwise (y) direction, as defined in $4. 
The coefficients in (C3) depend only on z, so that Fourier transformation in x is 

possible. In particular, (C3) admits a solution in which Q,f i  and ? are independent 
of x. For these disturbances, (C3a) requires UQ + g k  = 0 provided a # 0 so that 
the disturbance varies in the spanwise coordinate y .  Equations (C3b) and (C3c) thus 
simplify to 

UFX = FZz + 2. 

P2, = 2, i2, = ePuyz), 
P(1) = a(1) = 0 = F’(0). 

Equation (C4b) shows that the disturbance to the (total) shear stress vanishes 
for these disturbances, i.e., 8(puZ) = 0, so that the perturbation pressure vanishes. 
This happens because both disturbance and base flow are unidirectional. p therefore 
depends only on x in this Hele-Shaw flow, as use of ( la ,b)  shows. In other words, 
the perturbation pressure gradient vanishes for a # 0, as in (C5b). 

Notice that a does not appear in the eigenvalue problem (C4), and is therefore 
arbitrary. In this Hele-Shaw analysis of the parallel flow there is thus no wavenumber 
selection. 

By substitution, (C4) admits the solution 

? = (OH)@,  = (QU), (C 50, b )  

provided (8g)e = 0. The unidirectional base flow (Cl) therefore loses stability to 
unidirectional disturbances at the turning-point in the 8g-8 curve shown in figure 8. 
Thus 8, = 5.838, (OH,), = 1.982. The ratio of wall to centreline viscosity is then 
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exp(OHo) = 7.257 (Morris 1988). In the entry flow, the maximum viscosity ratio in the 
neutrally stable flow occurs before fluid on the centreline begins to cool, and is about 
324 in a channel of infinite length. The parallel flow is less stable than the entry flow 
because the pressure gradient is more sensitive to Q in the parallel flow. 

These remarks also hold for disturbances with non-zero wavenumber, b, in the 
primary (x) direction provided a >> b. 
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